

Real-time Monitoring for Risk of Acute Kidney Injury
Kai Kuck, Ph.D.

History of Innovation

Deeply Embedded in Clinical Department

Important Unanswered Question in Anesthesia & Critical Care

Ideal BP
for
Adequate Kidney Perfusion?

Cerebral Oxymetry

EKG Changes

Assumption

The Brain & Heart: Sensitive Monitors For Hypoperfusion

But....

Adequate Brain & Heart...

...Poor Renal Perfusion

Acute Kidney Injury (AKI) is Multifactorial

Nephrotoxins

Anemia

Blood Transfusion

Emboli

Hypoxemia

Hypoperfusion

AKI Associated with Cardiac Surgery

Robert H. Thiele,* James M. Isbell,[†] and Mitchell H. Rosner[‡]
Clin J Am Soc Nephrol. 2015 Mar 6;10(3):500-14.

Renal Injury ~ Up to 50% AKI Incidence ~ 20-30% Need for RRT ~ 2-6%

Acute Kidney Injury

Mortality
ICU Length of Stay
Hospital Length of Stay

The Problem

Traditional Diagnosis

- Prolonged Oliguria (6-12 hrs)
- Rise in Creatinine

Biomarkers

- NAG, NGAL, TIMP-2, IGFBP-7, KIM-1
- Still only predictive 3-4 hrs after injury.

It takes hours to diagnose AKI Late diagnosis precludes prevention.

In Humans

Kainuma et al 1996

Device Development Bench Validation

Natalie Silverton, MD, Assistant Professor of Anesthesiology

- Fellowships in Cardiac Anesthesia, Thoracic Anesthesia, and Echocardiography.
 Double boarded in Emergency Medicine.
- Day to day clinical experience in hemodynamic management and the care of patients with multi-organ disease.
- Research in comparative physiology, cardiac anesthesia, echocardiography, and the detection of acute kidney injury

Kai Kuck, PhD, Professor of Anesthesiology

- Bioengineering, Innovation Management, Research Director
- Former Head of Research at major global med device co.
- Research: Pharmacokinetic/dynamic visualization, signal processing, hemodynamic monitoring, intelligent systems

SWS Medical Ventures

- experienced Utah research company with know-how in developing clinical fiber optic based sensors
- ISO 13485 quality systems, regulatory expertise will help in subsequent transitioning towards an FDA 510(k) and CE (Europe) cleared medical product.

Device Development Bench Validation

Subj #58 out of 100

Clinical Studies

(Cardiac Surgery, Sepsis, Renal Transplant)

Basic Science

(Autoregulation, Vasopressors, Fluid Managment) Development and
Validation of a
Protocol for Renal
Hypoxia

QUESTIONS FOR THE PANEL

- how far should we drive the maturity of this technology?
 - proof of principle / feasibility
 - 510(k)
 - manufacturing
 - regional/national/global sales
- what is the best option for exiting / developing our business
 - sublicensing to vs partnering with established players in the market?
 - begin our own (or contract) manufacturing?
 - beginning our own distribution/sales?
- what do we need to pay attention to with respect to reimbursement aspects?
- is it sufficient to get IP protection in the US? (which other countries?)
- \$\$\$
 - how much can we expect to need?
 - options for raising those funds