Airway Bronchoscope

The future of rigid bronchoscopy and minimally invasive airway surgery

J. Fredrik Grimmer, MD Airway Designs, LLC University of Utah

Airway Foreign Bodies

- 2.5 Million foreign body aspirations per year in US¹
- 3.4 % mortality in pediatric hospitalizations for airway foreign bodies²
- 2000 deaths per year in the United States¹
- 3rd and 4th leading cause of accidental death in ages 1-4 and 0-1, respectively³

¹ Karatzanis, Vardouniotis, Moschandreas et al. The risk of foreign body aspiration in children can be reduced with proper education of the general population. Int J Pediatr Otorhinolaryngol 2007;71 (2) 311- 315

² Shah RK, Patel A, Lander L, Choi SS.Arch Management of foreign bodies obstructing the airway in children. Otolaryngol Head Neck Surg. 2010 Apr;136(4):373-9

Rodríguez H, Passali GC, Gregori D, Chinski A, Tiscornia C, Botto H, Nieto M, Zanetta A, Passali D, Cuestas G. Management of foreign bodies in the airway and oesophagus. *Int J Pediatr Otorhinolaryngol*. 2012 May 14;76 Suppl 1:S84-91. Epub 2012 Feb 24S

The pediatric rigid bronchoscope

Two bronchoscopes used with three optical forceps requires **28 pieces of equipment**

Would it make sense to assemble a fire extinguisher from 28 pieces?

Complications During Anesthesia

- Hypoxemia (9.2-25.5)¹⁻³ and hypercarbia (24%)¹
- **Surgeon** inhales **anesthetic gas**⁵ (headache, dizziness, increased risk if surgeon has liver disease)
- Hypoxemia and inability to ventilate is most common cause for intraoperative cardiopulmonary arrest in children⁶
- Mortality 0.5-1.1%^{7,8}
- Overall 20% major complication rate, 5% prolonged anesthesia⁹
- Litman RS, Ponnuri J, Trogan I. Anesthesia for tracheal or bronchial foreign body removal in children: an analysis of ninety-four cases. Anesth Analg 2000;91:1389–91
- Chen LH, Zhang X, Li SQ, Liu YQ, Zhang TY, Wu JZ The risk factors for hypoxemia in children younger than 5 years old undergoing rigid bronchoscopy for foreign body. Removal. Anesth Analg. 2009 Oct;109(4):1079-84.
- Shen X, Hu CB, Ye M, Chen YZ. Propofol-remifentanil intravenous anesthesia and spontaneous ventilation for airway foreign body removal in children with preoperative respiratory impairmentPaediatr Anaesth. 2012 Dec;22(12):1166-70.
- 4 Ostfeld E, Ovadia L. Bilateral tension pneumothorax during pediatric bronchoscopy (high-frequency jet injection ventilation). Int J Pediatr Otorhinolaryngol. 1984 Jul;7(3):301-4.
- Westphal K, Lischke V, Aybeck T, Kessler. Exposure of the pediatric surgeon to inhalation-anesthetic during pediatric bronchoscopy, procedures. Pneumologie. 1997 Dec;51(12):1123-6.
- 6 Morray JP. Cardiac arrest in anesthetized children: recent advances and challenges for the future. Paediatr Anaesth. 2011 Jul;21(7):722-9.
- Fidkowski CW, Zheng H, Firth PG. The anesthetic considerations of tracheobronchial foreign bodies in children: a literature review of 12,979 cases. Anesth Analg. 2010 Oct;111(4):1016-25
- Latifi et al. Rigid tracheobronchoscopy in the management of airway foreign bodies: 10 years experience in Kosovo. *Int J Pediatr Otorhinolaryngol.* 2006;70:2055-9
- 9 Sjogren, PP... Grimmer, JF. Predictors of Complicated Airway Foreign Body Extraction. *The Laryngoscope*. In Press.

Airway Designs, LLC

- Start up with two bioengineering students from the U
- \$10,000 personal funds
- \$25,000 in engine funding
- Jeremy Horton —> Engineering support
- Myriad Fiber —> Fiber options and CMOS (Omnivision)
- 3-D printed prototype with 3D systems

Fully Integrated Rigid Bronchoscope

Computational Fluid Dynamics

Control

Prototype

Mean SpO2 during Bronchoscopy with Mechanical Ventilation in Lambs (n=6)

Mann Whitney U Test at 3 min (P< 0.03)

Hemodynamically stable lambs during bronchoscopy with mechanical ventilation

Kaplan-Meier Curve with Log Rank Test (P<0.17)

Advantages

Faster response time and fewer technology failures

- 3 piece assembly compared to 10
- No need to switch-out camera head and re-focus image during procedure

Improved patient ventilation

- Improved laminar flow
- maintain a sealed airway circuit

Less accidental trauma

Continuous viewing during suction

Shorter procedure time

- Few steps to complete a task
- Easier Instrument insertion

Better control of instruments

- Easier to handle and insert
- Greater variety of instruments
- 2 instruments simultaneously

Market Research

- LEAN Cohort Analysis
 - 6 week course through the University of Utah
 - Developed objective survey to identify "pain points" with current technology
 - Interviewed pediatric surgeons and pediatric otolaryngologists in Utah and Colorado
 - Most commonly cited "pain points"
 - Complicated assemble (unanimous)
 - Lack of viewing during suctioning
 - Poor ventilation

Marketing Research

- Primary Children's Hospital represents about 1% of US market
- 600 pediatric rigid bronchoscopies per year
 - 90% diagnostic
 - 10% Foreign Body removal
- Maintain inventory of 80 bronchoscopes replaced every 5 years
- Cost per unit is \$11,664

Market for Pediatric Bronchoscopy

	Number of children (<15 yo)	Number of scopes needed	Market to replace current inventory (\$10,000/scope)	Annual Addressable Market (5 year life)
Primary Children's		80	\$800,000	\$160,000
Utah	653,344	100	1,000,000	\$200,000
United States	62,771,600	9,615	\$96,153,000	\$19,230,000
North America	66,281,101	10,144	\$101,144,900	\$20,288,000
Europe	118,417,680	18, 124	\$181,240,000	\$36,248,000

http://www.prb.org/DataFinder/Geography/Data.aspx?loc=412

Challenges

- Keep imaging components clean in situ
- Small market
- Disruptive design

Future

- \$727k to obtain 510k (Class II) FDA approval
- Myriad Fiber to manufacture imaging system
- Low and high volume manufacturing plans being developed
- Target thought-leading Children's Hospitals
- Only need contracts with 8-10 Children's Hospitals to obtain 10% market share in the US
- With 10% market share, US annual addressable market 1.9-3.8 million

Praise at ASPO Meeting, Austin, TX, May 2017

- Michael Rutter, MD (Cincinnati Children's Hospital)
- Robert Rubin, MD (Albert Einstein College of Med.)
- Reza Rahbar, DDS, MD (Boston Children's Hospital)
- Karen Zur, MD (Children's Hospital of Philadelphia)
- Margaret Kenna, MD (Boston Children's Hospital)
- Glenn Green, MD (University of Michigan)
- David Zopf, MD (University of Michigan)
- Bob Weatherly, MD (Children's Mercy, Kansas City)